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Abstract—The problem of the free vibrations of a rectangular elastic plate, either clamped or simply
supported, with a central circular hole has been investigated by a least-squares point-matching method. The
results are given in the form of curves relating the natural frequency of the plate to the hole size for a variety
of Poisson’s ratios. The curves do not behave monotonically, and the hole size at which the frequency is a
minimum is seen to be dependent not only on the boundary conditions but also on Poisson’s ratio. A two-fold
mechanism of strain relief and mass reduction is proposed to explain these results as well as the results of
previous studies on the vibrations of plates with discontinuities.

1. INTRODUCTION

Much attention has been given in recent years to the dynamic response of elastic plates to various
types of loadings. Not surprisingly, almost all the work in this area has dealt with continuous, or
complete, plates. In reality, however, most structures are flawed in some way. Portholes, welded
or riveted seams, and pipe or equipment connections all constitute intentional discontinuities in
the design of structures. And, if by accident, a hole or crack should appear in a plate, it would be
well if the behavior of the plate in such a circumstance were known.

While a number of studies[1-25] have been done on the static behavior of plates with
discontinuities, only recently the dynamic behavior of plates with cracks or holes has been
considered.

The first step in the consideration of the dynamic behavior of plates is the study of the free
vibrations of plates. An excellent survey of the literature in this area is given by Leissa[26], who
also presents a comprehensive set of available resuits for the frequencies and mode shapes of
free vibrations of plates. Most of these results, however, are for complete plates. Very little work
has been done on the free or forced vibrations of plates with cracks or holes. Folias[27] used an
integral formulation to obtain the Kirchhoff bending stresses for a plate subjected to periodic
transverse vibrations and containing a through crack. Lynn and Kumbasar[28] studied the free
vibrations of simply supported plates having a through line crack. They showed that the
frequency equation is the eigenvalue problem of a homogeneous Fredholm integral equation of
the first kind. Their work indicates that the natural frequencies of a plate decrease monotonically
as the crack length increases. Stahl and Keer[29] studied the vibration and buckling problems of a
plate with a through crack and showed that the solution involves homogeneous Fredholm integral
equations of the second kind. They also noticed that the effect of the crack was to decrease the
natural frequencies of the plate.

Unlike the problem of the vibrations of a plate with a through crack, which, if properly
approached, can be handled almost exclusively by analytical techniques, the case of the free
vibrations of a thin plate with a hole requires some numerical method of solution if any useful
information is to be obtained. Cheng[30] was able to present a formal solution to the problem of
the defraction of a plane, time-harmonic compressional wave by a group of holes in a thin plate
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by the method of multiple scattering, but it appears to be of little practical use in most of the
common engineering problems seen today. Kumai{31], using a numerical technique similar to
that used in the present study, found the frequencies of the transverse vibrations of a square
plate, with a central circular hole, and compared this numerical data with that found
experimentally. Though he presented only a few graphs, a surprising trend is evident. As the hole
size increases, the natural frequencies first decrease, then increase, so that for moderately large
holes, the natural frequency of the plate is larger than the corresponding frequency for a
complete plate. Except for presenting the data, Kumai makes no effort to explain this trend.
Takahashi[32] studied the same problem by using the Rayleigh-Ritz method and deflection
functions which are products of beam deflection functions. His results indicate no trend toward
decreasing frequency with increasing hole size. On the contrary, the frequency increases
monotonically. Figure 1 shows the general difference between the results of the previous two
works.
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Fig. 1. Variationin frequency with hole size fora clamped plate.

The present research concerns the free vibrations of an elastic, rectangular, thin plate with a
central circular hole. Results are given, in the form of curves relating frequency vs hole size,
for both simply supported and clamped plates and for a variety of Poisson’s ratios. The difference
between Kumai’s and Takahashi’s studies is one reason for the present study. Another
motivation arises from the authors’ wish to understand more fully why two types of flawed plates
behave so differently. As was previously mentioned, cracked plates exhibit a trend of decreasing
frequency with increasing crack size, while plates with holes exhibit a general increase (with a
possible initial decrease) of frequency with increasing hole size. It is the authors’ hope that the
results of this analysis help to explain, at least qualitatively, this seemingly contradictory
behavior.

2. FORMULATION OF THE PROBLEM

The present research concerns the free vibrations of a thin, homogenous, isotropic, linearly
elastic rectangular plate of uniform thickness h containing a central circular hole, which is free of
applied stresses. One can derive from three-dimensional elasticity theory the following
differential equation for plate vibrations:

-
oW vzt M

-
VW + py

Ul

where p(x, y, z, t) is the external transverse load per unit area. In the case of free vibrations,
p =0, and equation (1) becomes:

4 1Y) _2_32W=
VW+D~5P-' 0 2
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In equations (1) and (2), V* = ¥’V is known as the biharmonic operator, p is the mass density, ¢ is
the time, and D is the plate flexural rigidity, defined as:

En®

b= 2=

Here, E is Young's modulus and » is Poisson’s ratio.
If one assumes a solution of equation (2) in the form

W =W cos wt 3)

where w is the frequency of free vibration in radians per second and W is the deflection
amplitude function, then equation (2) becomes:

VW = 9P
=P W, @)

3. SOLUTION OF THE PLATE PROBLEM
The solution of equation (4), as given in[26]}, is:

W= {AJ.(KR)+ B,Y,(KR) + C.I.(KR) + D,K.(KR)} cos né
n=0

+ 3 {A(KR) + B1Y.(KR) + C1L(KR) + DK, (KR)} sin no )

n=1

where R = r/a is a non-dimensionalized coordinate and a has the dimensions of length. Also in

),
K=ak where k*= w\/}%
is a frequency parameter.

In equation (5), J. and Y, are the Bessel functions of the first and second kinds, and I, and K.,
are modified Bessel functions of the first and second kinds, respectively. The coefficients
A ....,D. and A%,...., D¥ determine the mode shape and are evaluated from the boundary
conditions.

The boundary conditions are: (see Fig. 2)

at X=z=h W=0

-5 =0 (6a)
at Y==x%h, W=0
=0 (7a)

o

T
1

Fig.2. Geometry of the plate.
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where X = (x/a)and Y = (y/a). Also, h, = (l,/2a) and h. = (I./2a). Boundary conditions (6a) and
(7a) are to be used for a plate with clamped edges. If the plate is simply supported, the boundary
conditions become:

at X=i'h1 W=0
Fw
at Y=i’h2 W=0
?*w
33(—2"-—0 (7b)

where Mx and My are the bending moments in the X and Y directions, respectively.
Since the circular hole is to be free of all applied stress, the boundary conditions to be satisfied
along the edge of the hole are:

R= Ro: MR = () (8)

—R. 1 0Mzo _
R=Re Qe g5 = =0 9)

where Mg is the bending moment normal to the edge of the hole, Mg, is the twisting moment in
the same plane, and Qg is the shear force acting at the edge of the hole. Equation (9) is the
familiar Kirchhoff boundary condition, which is necessary here because the fourth order system
represented by equation (1) does not allow the vanishing, independently, of the shear force Qr
and the twisting moment Mge.

The solution {5), along with the boundary conditions {6) through (9}, uniquely determine the
stress field. However, because of the rectangular boundaries, the boundary conditions cannot be
satisfied identically on all the boundaries. For this reason, some numerical technique, such as
least squares point-matching boundary collocation must be employed. In terms of the deflection
W, equations (8) and (9) become:

W v 3*W y oW
SRR 0 RaR (10)
W 2-y &°W 3-vd’W 13W_ 1 W
3R> R? 8R#8* R® 48° R 3R* R’aR

R =R,

R =Re: =0 (11

Substituting the solution (5) into the boundary conditions (10} and (11), the following equations
result:

a A, + a:B, + asC, + a.D.=0 (12a)
BiA. + B:B. + B:C. + BiD.=0 (12}
aA¥+ aB¥+ o C¥+a,DE=0 (12¢)
BiA%+ B:Bi+ B:Ch+B.DE=0 (12d)

where

2 2

v vn v vn
ar=Jit+Ji-—=). a=Yi+t5 Yi-—==Y,

! " Ry RS - R, ™" R

2

2
I"+-I’ 21,, s K”+—K’ —-7K
[}]

[}

Bi= T+ g Tim g (L 2= )i 2w,

BZ—Y”’+ -Yi- 2(1+nz(2—u))yg+%§-’nzy,,
0
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go= 12+ - L4 e e,
R, Ro 0
— 1 " 1 2 ' 3-v 2
Bl_Kn+_Kn- 2(1+n (Z—V))K,.+——3n K,.
0 RO Ro

A prime denotes differentiation with respect to R.

Note that the boundary conditions around the circular hole can be satisfied exactly, while the
boundary conditions along the rectangular outer edges of the plate must be handled with some
numerical procedure. Equations (12a) and (12b) can be solved for A, and B, in terms of C, and
D..

An = ')’lcn + ‘Yan
B, = 3Ca + 4D, (13)

where

— azgs - asgz _ 02E4 _ a4é2

‘YI—.alBZ_aZBl ‘yz—aIBZ_azﬂl

y=SBimafs  _afi-aip
? asz—asﬁx 4 alﬁz—asﬁl

Equations (12¢) and (12d) show that the same relationship exists for A%, B*, C* and D¥:

At =yCt+v.D?
Bﬁ = 'y;Cﬁ + 74Dﬁ (14)

Substituting the solution (5) into the boundary conditions (6) and (7), and making use of (13) and
(14), the following equations result:

> {Cul(Tn + y1Jn + ¥3 Ya) cos n8]+ Do [(Kn + 2Ju + 74 Y,) cos né]
n=0
+ CH(IL + y1Jo + v:Y,) sin n6]+ DE[(K. + y2Jo + 7Y, ) sinnél}=0  (15)

Equation (15) holds at X = +h,, Y = =h, for either simply supported or clamped edges.

o

20 {C,.[(I:.+ viJutysYo)cosn@cos 0+ (L +yiJ, +v; Y,.)% sin né sin 0]
+ D,.[(KZ. +y2Jut+ viY2)cos nf cos 6 + (K, + v2J, + v4 Y,.)% sin nd sin 0]
+ C’,‘.‘[(IZ.+ vyiJn+ y:Y,) sin n6 cos 6 — (I, + viJ. + y;Y,.)I%cos né sin 0]

+ D’,':[(KH YaJnt y.Y,)sin nf cos 8 — (K, + y2Ju + ¥4 Ys) ﬁ- cos né sin 0]} =0 (16a)

Equation (16a) holds at X = *h, for clamped edges.
2 {C,.[(cosz 0 + v sin® 8) cos n0(I.+ v, J5+ y; Y7 +—Ilf(2"(l —v)sin 8 cos 8 sin né
n=0

+cos n(sin® @ + v cos® 0)) (I.+ v, J, + y;Yl.)'-R—nf(n cos nf(sin® @ + v cos® §)
+2(1 - ) sin 8 cos @ sin @)}, + viJ, + v3 Y,.)]

+ D,.lcos n(cos® 9 + v sin’ 0) (K" + y2Ji+ v, Yi) + 1_12- (2n(1- 1) sin 6 cos 0 sin né

+cos n@(sin’ 8 + v cos? 9)) (K 4o+ y2J u+ 74Y;)—R%(n cos nf(sin® @ + v cos> 8)
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+2(1—»)sin @ cos 6 sin nB)} K, + v,J, + y4Y,.)]
+C* [sin né(cos® 0 + v sin® O)I5+ yiJ o+ y: Y1) +%(sin né(sin® 6 + v cos’ §)

—2n(1—-v)sin @ cos 8 cos k@), + yiJ .+ 73YZ.)+R£(2(1 — v)sin 6 cos 6 cos né
2
—n sin 0(sin® 6 + v cos’0)) (I + yiJ. + ¥5 Yn)]

+ Dﬁ[sin né(cos® 6 + v sin® 9) (K + yoJ i+ 7. Y?) +%(sin né(sin® 6 + v cos® 8)

—2n(1—v)sin 6 cos 8 cos n@) (K, + y.J, + y4YZ.)+£3(2(1 — v)sin 8 cos 8 cos né

—n sin 8(sin®> @ + v cos’® 8)) (K., + vJ,. + y4Y,.)]} =0 (16b)

Equation (16b) holds at X = +h, for simply supported edges.

'20 {C..[(I!.+ yiJn+ 1Y) cos n@ sin 6 +—1'% (I + y1Ju + y3Y.) sin né cos 0]
+ D,.[(K:. +v.J4+ 5 Y1) cos nd sin 6 — 7’;—(1(" + v,Ju + v, Y, ) sin n6 cos o]
+ C‘,':[(I:,+ yiJ 4+ 43 Y1) sin nf sin 6 +£(1,, +y,Jy +7:Y,) cos né cos 0]
+ m[(K;Jr yaJ ot 2Y2) sin 0 sin 6 + 2 (K, + y2J + 7.Y,) cos nf cos e]} =0 (17a)

Equation (17a) holds at Y = +h, for clamped edges.

g {C,.[cos né(sin® 6 + v cos® ) (In+ yiJu+ y:Y7) +71Q-(cos n@(cos’ @ + v sin’ )
—2n(1-v)sin 6 cos 0 sinnf) (I +yJ.+ ng,’,)—jg—z(n cos né(cos® @ + v sin” 6)
—-2(1-y)sin 8 cos 8 sin n8) (I, + y.J. + y;Y")]
+D, [cos nB(sin® 8+  cos” 6) (Ki+ yaT 4+ 72Y5) + 2 (cos nb(cos” 6+ v sin’ 6)
—2n(1—v)sin 8 cos 0 sin n8) (K. + v.J, + le.)—-% (n cos né(cos® 6 + v sin® 0)

—2(1—v)sin @ cos 8 sin n8) (K. + vy2J. + y4Y,.)]

+ Cﬁ[sin n@(sin® 0 + v cos® 0) I+ yiJu+ y:Y?2) +7]e-(sin né(cos’> 8 + v sin> 9)

+2n(1—v)sin @ cos 6 cos @)+ v J,+y:Y}) —%(n sin nf(cos* 6 + v sin’ 9)

+2(1—v)sin @ cos 6 cos n8) (I, + y.J.. + 'y;Y,,)]

+ Dﬁ[sin né(sin’> 6 + v cos’8) (K + v J i+ v Y +71z-(sin né(cos® 6 + v sin® 8)

+2n(1—v)sin 8 cos 0 cos n8) (K, + vyJr + y.,Y;.)—% (n sin n6(cos’ 8 + v sin> 9)

+2(1-v)sin 6 cos 6 cos n8) (K, + y,J. + y..Y,,)]} =0 (17b)
Equation (17b) holds at Y = +h, for simply supported edges. The original vector of 8n +4

unknowns [A,, B., C. D., A%, B¥* C¥*, D¥*] has now been reduced to the vector of 4n +2
unknowns [C,, D., C*, D*], which now must be determined from equations (15-17).
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Since the rectangular boundaries are not coordinate lines, an exact solution of equations
(15-17) cannot be found. To obtain an approximate solution, the infinite series solution (5) is
truncated at n = N, leaving 4N + 2 unknowns to be determined. M points are chosen along the
plate outer boundaries, and since there are two conditions for each point, 2M equations are
generated. For 2M =4N +2, the equations can be solved for the unknowns. However, if
2M > 4N +2, and the unknowns are determined in the least squares sense, then, as M — «, this
process becomes that of minimizing the integral of the squared error.

The set of equations which result from satisfying the boundary conditions at M points can be
written in matrix form:

AlC, D.,,C%,D¥=0

where A is a 2M by 4N + 2 matrix whose coefficients are functions of the frequency w, and [Cn,
D,, C%, D*] is the 4N +2 vector of unknowns. It is shown in Ref. [9] that a necessary
condition that the vector of unknowns minimize the squared error is that the unknowns satisfy

ATA[C, D,, C%, D¥]=0 (18)

where A7 is the transpose of A and ATA is a 4N + 2 by 4N + 2 square matrix. For equation (18) to
have a nontrivial solution, the determinant of AT A must vanish. Therefore:

IATA|=0 (19)

Equation (19) is the frequency equation which can now be solved to obtain the natural
frequencies of the plate.

4. RESULTS AND DISCUSSION

As was stated above, equation (19) is the frequency equation which, when solved, will yield the
natural frequencies of the plate. Results will now be presented for a square plate, both simply
supported and clamped, for a variety of Poisson’s ratios. Thus, I; = I, = I (or h; = h). The infinite
series solution (5) is truncated at n =4, leaving eighteen unknowns to be determined. Sixteen
points along the outer boundaries of the plate are chosen (M = 16), yielding thirty-two equations in
the eighteen unknowns. Thus, equation (19) is a determinantal equation of order eighteen, and the
values of » which cause the determinant to vanish are the natural frequencies of the plate.

It was noted by Hoffman and Ariman{9] that the best accuracy in the least-squares
point-matching technique was obtained when the ratio of equations to unknowns was about 2 in the
rectangular plate problem with a circular hole. For the verification of this conclusion, the case of a
simply-supported square plate with no hole was considered. A closed-form solution for this
problem exists, but the natural frequency was sought by the point-matching method so that a
measure of accuracy could be obtained. Holding the number of collocation points constant, it was
found that truncating the solution at n = 4 gave the best results from the standpoint of accuracy and
computational difficulty. With n = 4 the number of collocation points was varied between 8 and 40
and it was found that 16 collocation points yielded the most accurate estimate of the natural
frequency. For this case the natural frequency resulting from these equations differed from the
result of the closed-form solution by less than 1 per cent. It should also be noted that Kumai’s
solution[31] differs from the present one in that the functional form of his solution for a square
plate contains only cosine terms, whereas the present solution (equation 5) for a rectangular plate
imposes no symmetry restriction in 6 and thereby both sine and cosine terms are retained.

Obviously, some numerical technique is needed to solve equation (19), and it was decided to use
Muller’s iterative technique [33], which is a quadratic interpolation scheme for finding the roots of
an equation. This technique requires the evaluation of the determinant at three trial values of w,and
then uses these values to generate the next estimate. If the first three estimates are reasonably good
(i.e. to within 10 per cent), only five to ten iterations are required to determine the frequency.

In the introduction, two reasons were given for the present study. First, Kumai[31], utilizing a
technique similar to the one employed here, noticed an initial decrease in frequency with increasing
hole size, after which the frequency increased. Takahashi[32], on the other hand, noticed no such
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trend. Both works were done for a Poisson’s ratio of 0.3. Takahashi used the Rayleigh-Ritz method
and beam deflection functions. His results indicate only an increase in frequency with increasing
hole size.

The curves given in Figs. 3 and 4 show some of the results of the present study. Figure 3 shows
the variation of the frequency parameter:

w¥= wlz\/%

with increasing hole size for a simply supported plate, while Fig. 4 shows the same study for 2
clamped plate. For a plate with no hole, the frequency parameter «* = 19.739 for a simply
supported plate and w* = 35.984 for a clamped plate. The numerical technique used here yields
results to within one per cent of these values. In Fig. 4 a comparison of the Takahashi’s results
{31] with those of the present study for a Poisson’s ratio of 0.3 is also presented. Greater difference
is observed for smaller holes.

As Figs. 3 and 4 show, there is indeed an initial decrease in frequency with increasing hole size,
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the extent of this decrease depending on Poisson’s ratio. It should be noted that the frequency
parameter w* used in Figs. 3 and 4 is itself a function of ».

Thus, two points on different curves but on the same horizontal line have the same frequency
parameter w*; however, their frequencies are not equal. To better illustrate the effect of hole size
and Poisson’s ratio on the frequency w, Figs. 5 and 6 show the variation in frequency with hole size.
The frequency parameter used in these figures is independent of ». It might be noted that the larger
frequencies belong to the plate with the larger Poisson’s ratio. This is in keeping with the fact that,
other things being equal, the plate with the greater strain energy will have the higher frequency. As
Poisson’s ratio increases, the lateral strain energy increases, and thus, the total potential energy of
the system increases.

As was stated, Figs. 3 and 4 indicate that Kumai’s[31] analysis was more accurate than
Takahashi’s[32]. However, a closer look at these figures show that the tendency of the frequency to
decrease is greatly affected by Poisson’s ratio. If the hole diameter to plate length ratio 27/l at
which the frequency is a minimum is called the critical ratio R., then it is clear from the figures that
R. decreases as Poisson’s ratio decreases. Table 1 and Fig. 7 show this trend explicitly.
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Table 1. Variation in critical hole ratio with Poisson’s ratio
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It appears from Fig. 7 that, at » = 0, the critical ratio R, is either zero or very small. Thus, the
present analysis can reproduce Takahashi’s results if » is set equal to zero. In reality however, it
appears that Takahashi’s analysis had the effect of setting » = 0. Recall that Takahashi, in using the
Rayleigh-Ritz method, employed as his comparison functions a set of functions derived from beam
deflection functions. Such functions approximate plate functions fairly well, except for the fact
that elementary beam theory allows free lateral contraction and expansion (i.e. v =0). Thus,
Takahashi was in effect replacing his plate with an infinite number of beams, and, in so doing,
setting Poisson’s ratio, for his study, equal to zero. The curve representing Takahashi’s work, given
in Fig. 1, and yielding R. = 0,is actually an asymptotic curve for the set of curves in Figs. 3 and 4.

One other motivation for the present study was mentioned in the introduction. It was noted
there that, in two studies on the free vibrations of cracked plates[28, 29], the natural frequency
decreased as crack size increased, as opposed to the behaviour of a plate with a hole, shown in Figs.
3-6. It was hoped that this study could explain, at least qualitatively, the reason for this difference.

It was mentioned earlier in this study that the effect of an increase in Poisson’s ratio was an
increase in the lateral strain energy of the plate. This of course increases the total potential energy
of the plate and thus increases the frequency. Likewise, any mechanism that tends to decrease the
lateral strain energy will cause a decrease in the frequency of the plate. A through crack is such a
mechanism. Along its free edges, the plate material is allowed to expand and contract freely. Thus,
the crack behaves as a strain reliever. As the crack gets longer, more free surface is available to
relieve lateral strain, and thus the total energy (and the frequency) of the plate decreases. This
would explain the behavior of cracked plates noted in[28, 29].

A hole in the plate would reduce lateral strain energy in the same way as a crack does. The
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presence of the hole, however, introduces another effect. Just as a reduction in energy will reduce
the frequency of a system, the reduction of its mass will tend to increase it. For a thin crack, the
mass reduction is negligible, but for a hole, it can easily be the dominant effect. Since strain relief
depends on the free surface available, the effect of the reduction of lateral strain energy by a hole
would increase, more or less, as the diameter of the hole. However, the effect of mass reduction,
which tends to increase the frequency of the plate, would increase as the square of the diameter of
the hole. Thus, for a small hole, the reduction of strain might well be the dominant influence, and the
frequency would decrease. However, it would appear that as the hole gets larger, the effect of mass
reduction would soon replace strain relief as the primary factor, and the frequency would begin to
increase. Figure 8 shows an attempt to give some quantitative backing to this explanation of the
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Fig. 8. Tllustrations of mechanisms for strain energy reduction and mass reduction effects on frequency of
plate.

curves of Figs. 3-6. The top curve in Fig. 8 represents the effect of mass reduction alone on the
frequency w of a plate. If all other quantities are kept constant, the frequency @ of the plate is given
by

_ constant

Vmass

Of course, reducing the mass of a plate by cutting a hole in the center is not the same as uniformly
reducing the density of the plate, but the above formula at least provides something to work with.
The bottom curve in Fig. 8 represents the results of the work of Stahl and Keer[29], who studied
free vibrations of a simply supported, cracked plate with a Poisson’s ratio of 0.3, It is assumed here
that this curve represents only the effect of strain relief on the frequency of a plate. The middle
curve is the sum of the other two. Three things should be noted about this curve. First, it has the
general shape of the curves in Figs. 3-6. Also, R, for this curve is approximately equal to R, from
the curve for » = 0.3 in Fig. 3. Lastly, the frequency corresponding to R, from this curve is about
one percent higher than the value from Fig. 3.

The interaction between strain relief and mass reduction can also explain the variation of R,
with Poisson’s ratio, shown in Fig. 7. As v decreased, the contribution of the lateral strain energy to
the total potential energy of the plate also decreases. Thus, the effect of strain relief is not as
important in plates with small » as it is for plates with large ». If a plate has little strain energy to
begin with, the effect of mass reduction can more easily become dominant, causing R. to have a
small value. Conversely, if a large part of the total energy is composed of lateral strain energy, as it
is in plates with large », it would be expected that the effect of strain energy reduction would
dominate over a large range of hole sizes. Considering all this, it is not surprising that R. decreases
with ».
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